InfluxDB安装与简易使用指南

five3five3 34 于 2019-08-20 22:46:08 发布
  • 22 推荐
  • 2 收藏,232 浏览

InfluxDB安装使用指南

InfluxDB是目前比较主流的时序数据库,而时序数据库则是以时间序列为轴的数据库,与关系型数据库相比它有几个特点:

  • 每条记录都必须有时间戳字段(不设置会自动生成,类似关系型数据库的主键)
  • 提供海量数据的写入和读取能力
  • 提供针对时序的聚合函数,方便查询数据的聚合
  • 没有固定的schema设计

之所时序数据库要被设计成包含这些特性,是因为它天生就是为特定场景业务而生的;主要针对那些写多读少、大量数据写入需求、按时间维度进行聚合查询的业务场景,比如:数据监控。

数据监控方面细分还是可以分出很多的场景;比如:气象数据、天文数据、人口分布、工资水平、运维资源等等,生活中方方面面的行业都可以使用的到,而在时序数据库之前,人们通常都会使用关系型数据库来代替,但显然需要付出更大的代价才能满足需求。

同样的在测试领域中也是有很多的业务数据,可以使用到时序数据库;比如:产品质量数据,性能压测数据、服务器资源数据等等;所以今天就来介绍下如何安装和简单使用时序数据库。后面再分享如何基于时序数据库展示图表。

安装

安装InfluxDB包需要root或是有管理员权限才可以。

YUM安装

对于Centos用户,可以用下面的命令添加InfluxDB的仓库

cat <<EOF | sudo tee /etc/yum.repos.d/influxdb.repo
[influxdb]
name = InfluxDB Repository - RHEL \$releasever
baseurl = https://repos.influxdata.com/rhel/\$releasever/\$basearch/stable
enabled = 1
gpgcheck = 1
gpgkey = https://repos.influxdata.com/influxdb.key
EOF

然后安装、运行InfluxDB服务:

sudo yum install influxdb
sudo service influxdb start

如果你的系统可以使用Systemd(比如Ubuntu 15.04+, Debian 8+),也可以这样启动:

sudo yum install influxdb
sudo systemctl start influxdb

RPM安装

wget https://dl.influxdata.com/influxdb/releases/influxdb-1.7.7-1.x86_64.rpm
rpm -ivh influxdb-1.7.7-1.x86_64.rpm

配置

首先,你可以通过命令influxd config来查看默认配置,而配置文件的路径为:/etc/influxdb/influxdb.conf,想要某个配置项生效则直接取消注释并设置相应值即可。

另外,想要用自定义的配置文件来运行InfluxDB可以有两种方法:

  • 运行的时候通过可选参数-config来指定:
influxd -config /etc/influxdb/influxdb.conf
  • 设置环境变量INFLUXDB_CONFIG_PATH来指定,例如:
echo $INFLUXDB_CONFIG_PATH
/etc/influxdb/influxdb.conf

influxd

其中-config的优先级高于环境变量。

操作

安装完成之后,我们再来看看如何访问和使用InfluxDB进行数据操作。默认会提供一个influx命令行工具(原理是发送HTTP请求),它会默认连接本机的InfluxDB服务;当然你也可以通过发送HTTP请求来完成相同的操作。

另外在具体操作之前,我们可以理解下时序数据库与关系型数据库在概念上的差异和对标。具体如下:

关系型数据库 时序数据库
database database
table measurement
row point
index field tag
field field
primary key timestamp

database操作

> influx -precision rfc3339
Connected to http://localhost:8086 version 1.2.x
InfluxDB shell 1.2.x
> CREATE DATABASE mydb
> SHOW DATABASES
name: databases
---------------
name
_internal
mydb

> USE mydb
Using database mydb

> 

可以看到除了第一条命令跟mysql的稍微有点差异,其它的命令跟mysql的如出一辙,这说明在用户友好型方面也是做了考虑,避免大家重复学习无用的内容。

插入记录

> INSERT cpu,host=serverA,region=us_west value=0.64

cpu是measurement(table)的名称;host,region是tag(index field)的名称;value是field的名称;整行则是一个point(row)数据;默认这条记录被存储在当前的database下。

查询记录

> SELECT "host", "region", "value" FROM "cpu"
name: cpu
---------
time                                     host         region   value
2015-10-21T19:28:07.580664347Z  serverA      us_west     0.64

这语法跟mysql几乎没有区别,这里主键time是自动生成的,因为插入时没有带。

时序数据库一般只进行CR操作,而UD操作通常很少执行,所以大部分的时候不会涉及到更新和删除语法。

Python接口

上面介绍的操作都是通过InfluxDB自带的influx命令行工具操作的,而在程序化时我们则可以直接通过其HTTP接口来执行同样的操作,下面就介绍如何通过Python来进行InfluxDB的操作。

database操作

import requests
"""
数据库查询相关的HTTP请求内容如下:
curl -i -XPOST http://localhost:8086/query --data-urlencode "q=CREATE DATABASE curl"
curl -i -XPOST http://localhost:8086/query --data-urlencode "q=SHOW DATABASES"
"""

r = requests.post("http://localhost:8086/query", data={"q": "CREATE DATABASE python"})
print(r.text)
r = requests.post("http://localhost:8086/query", data={"q": "SHOW DATABASES"})
print(r.text)

插入记录

import requests
"""
curl -i -XPOST 'http://localhost:8086/write?db=curl' --data-binary 'cpu_load_short,host=server01,region=us-west value=0.64 1434055562000000000'
"""

r = requests.post("http://localhost:8086/write?db=python", data=b"cpu_load,host=server01,region=us-west value=0.64 1434055562000000000")
print(r.text)
## 从文件读取内容写入
with open('influxdata', 'rb') as f:
    r = requests.post("http://localhost:8086/write?db=python",
                      data=f.read().replace(b'\r', b''))
    print(r.text)

如果是批量写入的话,那么point数据必须只能以\n换行。所以上面有替换了\r为空的操作。

查询记录

import requests
"""
curl -G 'http://localhost:8086/query?pretty=true' --data-urlencode "db=curl" --data-urlencode "q=SELECT \"value\" FROM \"cpu_load_short\" WHERE \"region\"='us-west'"
"""

data = {"db": "python", "q": "SELECT \"value\" FROM \"cpu_load\" WHERE \"region\"='us-west'"}
r = requests.post("http://localhost:8086/query?pretty=true", data=data)
print(r.text)

Python三方库

很显然,像上面这种操作怎么可能没有第三方库呢,所以直接安装第三方库可能是最方便的选择。

pip install influxdb

具体的API使用样例如下:

from influxdb import InfluxDBClient

json_body = [
    {
        "measurement": "cpu_load",
        "tags": {
            "host": "server01",
            "region": "us-west"
        },
        "time": "2009-11-10T23:00:00Z",
        "fields": {
            "value": 0.64
        }
    }
]

client = InfluxDBClient('localhost', 8086, 'root', 'root', 'influx')
client.create_database('influx')
client.write_points(json_body)
result = client.query('select value from cpu_load;')
print("Result: {0}".format(result))

总结

关于InfluxDB的简单介绍就到这里,如果想更深层次的了解和使用InfluxDB,可以去官网查阅相关内容。这篇文章仅仅介绍了如何安装InfluxDB本身,而存储数据的本质其实是用于查询和展示,后面会有文章介绍如何与grafana结合并展示图表数据。

获取更多关于Python和测试开发相关的文章,请扫描如下二维码! 关注二维码

你可能感兴趣的文章

本文隶属于专栏

TestQA @ TestQA

TestQA's Blog